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V SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably non-uniform. At the same time, the standard

approximation schemes (such as least-squares approximation, or interpolation

at suitable interpolation points by splines) are so far only known to be

usable and bounded as long as the breakpoint sequence is almost uniform.

The problem of showing existence and uniqueness of bounded spline approxi-

mants to bounded data boils down to showing invertibility of a certain

infinite matrix A. The distinguished features of this matrix are its

bandedness and its total positivity, i.e., all minors of A are nonnegative.

In this paper we show that if there is exactly one bounded sequence mapped

by a biinfinite totally positive banded matrix A to the particular

sequence ( -ll-ll) then every bounded sequence is contained

in the range of A. In spline terms, this result says, for example, that

any bounded data sequence can be interpolated, and in exactly one way, with

a bounded spline (with a given knot sequence, at a given interpolation point

sequence) provided that the periodic data 1,1~l can be interpolated, and

in exactly one way, by a bounded spline from that class. Further, our argu-

ments show that such an interpolating spline can be constructed as the limit

of splines which satisfy finitely many of the given interpolation conditions.

The responsibility for the wording and views expressed in this descriptive
sugumary lies with MRC, and not with the author of this report.



THE INVERSE OF A TOTALLY POSITIVE BIINFINITE BAND MATRIX

Carl do Boor

S.Introduction. This paper is a further step in a continuing effort to understand cer-

tain linear spline approximation schemes. Convergence of such processes is intimately tied

to their stability, i.e., to their boundedness, as maps on C , say. Use of the D-splins

basis shows this question to be equivalent to bounding the inverse of certain totally posi-

tive band matrices. The calculation of bounds on the inverse of a given matrix is in gener-

al a difficult task. It is hoped that the present investigation into the consequences of

bandedness and total positivity for the structure of the inverse may ultimately prove help-

ful in obtaining such bounds.

The results in this paper were obtained in the study of a conjecture due to C. A.

Hicchelli [7] . in connection with his work on the specific approximation scheme of inter-

polation at a (strictly increasing) point sequence % by elements of $m,t I i.e., by

splines of some order m with some knot sequence t - (ti  , Micchelli became convinced

that every bounded function has one and only one bounded spline interpolant iff the partic-

ular function which satisfies f(T) . (-) , all i, has a bounded spline interpolant in

$mt * If (Ni ) - (Ni,m,t) denotes the corresponding B-spline basis for emt , then

Micchelli's conjecture can be phrased thus: The matrix A :- (N(Ti) is boundedly invert-

ible iff the linear system

(1) AX

has a bounded solution. Micchelli points out that, for a finite A , this conjecture is

indeed true and can be established using the total positivity of A

Whether A - (N (T I)) is finite or not, it is not difficult to see that A fails to

be invertible unless A is m-banded, i.e., unless T and t so harmonize that at most

m+1 consecutive bands of A are not identically zero. It is then a small step to the

conjecture

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041
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"A totally positive m-banded matrix A is boundedly invertible iff (1) has a bound-

ed solution"

whose truth Micchelli demonstrated to me for the case that A is a (biinfinite) Toeplitz

matrix.

As it turns out, this conjecture is incorrectl it fails unless one assumes, more

strongly, that (1) has a unique bounded solution. This uniqueness plays a crucial role in

the proof of the (corrected) conjecture given below. The proof is first given for strictly

m-banded matrices and is then extended to a general m-banded matrix by a limit argument,

using a 'smoothing' result from (4].

In outline, our argument is as follows: We show that the nullspace

U - (f e RAf -O0

of a strictly m-banded matrix A is Haar' in the sense that, for every f e\0 ,f'

has less than m - dimP weak sign changes. Here, fV is obtained from f by changing

the sign of every other entry,

This makes it possible to interpolate the bounded solution x to (1) at any m-set

I :- U10,....im }  by some y, e'T . The next (and hardest) step consists in showing that,

for k - m+ :- dim L+ with

+ := {f el : lim If(i)I <-}

YI lies between x and 0 on the interval i(k) :_ ]ikik+1[ , if we assume that i, <

< im . This implies that x, :- x - y, satisfies

Ix il W ( lx i

We use this fact as follows. If J is any integer interval, and AJ,J+k is the

corresponding section of A having the k-th band as its main diagonal, then

((-)i)l J - (Ax)Ij - AJJ+k(xIIJ+k)

provided we choose I [J V(J+m)] \(J+k) . But then, because of the total positivity of

A,
(AJJ+k)-1 1 Ix lJ+kl

" * IIJ



and this is bounded by 1Ai since I~k - J+k in this case . This uniform boundedness of

the inverses of all sections which are principal with respect to the k-th band is suffic-

ient for the bounded invertibility of A itself.

in this way, we show not only that existence and uniqueness of a bounded solution for

(1) implies bounded invertibility of A , but gain structure information about the inverset

The inverse is the pointwise bounded limit of the inverses of finite sections principal

with respect to one particular band. In the terms Of (1I]I, [ 21, A has a main diagonal.

This, in turn, permits the conclusior :, at the inverse of a totally positive bend matrix is

checkerboard, a statement conjectured in (Sip.3191.
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1. Preliminaries. In this section, we list certain notational conventions for easy

reference.

We use lower case letters to denote elements of R, , i.e., real functions on some

integer set I , with f(i) the value at i of the function (or sequence) f • If f

never vanishes, then S(f) denotes the number of sign changes in f , i.e.,

S(f) :- i e I : f(i)f(s(i)) < 0 11 ,

with s(i) :- min{j e I : j > i} the successor to i if we think of I as an ordered

sequence. Here, IJI denotes the cardinality of the set J . If f vanishes somewhere,

then it is customary to distinguish between strong and weak sign changes. These are given

by

-(f) :- inf{S(v) : v e sign f) , s+(f) :- sup{S(v) : v e sign f)

respectively, with sign f :- [v e [-1,1) : v(i)f(i) - If(i)I , all i} . In the sequel,

an unqualified "sign change" will always mean "weak sign change". It is convenient to

supplement the definition of S- and S+  by setting

S-(f) :- -1 , S+(f) := III if f - 0

It is then easy to check that

S-(f) + S+(f') - III - 1 , for all f e R,

with I - {i1 , ... , in i < ... < in , and

fn(i) :- (-)(is) i-1 s.l...,n

We also employ the prime to indicate a signature change in every other entry in case

I - Z . To be definite, we set

f'(i) :- (-)if(i) , all i , all f e RZ

In particular, 1' denotes the biinfinite sequence given by

I'i = _) all i •

If J is a subset of I , then fIj denotes the restriction of f e RI to J . In

this connection, \J : I\ J denotes the complement of J in I * We write \j instead

of \({J} Further,

J+k := {J+k J )

4



and

[i,j] : ( 1k e z i ( k 4 j)

More generally, [J] denotes the smallest integer interval containing J

Correspondingly (though not completely in the same way), we denote by AK,L the

restriction of the "matrix" A e R Ix  to the subset KxL of IxJ . If K - 1kl,...,k

and L = [ ....p ,with k < ... < kp £ < ... , then

det AK, L  := det (A(ki,))ip=1

All norms are sup-norms. Explicitly,

Iff : suPe if(i)I , all f e RI

and

IAI :- suplIAf1/Ifi : f e RJ , IfI<-) = sup E IA(i,j)l , for A e R
IXj

iei jeJ

Further, I :- £ () := f e RZ : IfI < - I . We call A e RZ bounded if A maps 1

to itself, or, equivalently, if KAI < • If need be, we distinguish between the bounded

matrix A and the linear map induced by it on X. by calling the latter

AIL.

The matrix A e RI x J  is totally positive ( : tp ) if

det AK,L ) 0 for all KxL C IxJ with IKI - ILI

See Karlin's comprehensive book (6] for details.

Finally, if i1, ..., ip and j ." ... , jp are sequences in I and J

IXj
respectively, and A e R , then we use the customary abbreviations

.... P] :- [(isli ) p~-

and

A( . P) - det (A(is,jt)) spt,

5



2. The nullspace of a strictly r-banded biinfinite matrix. The r-th diagonal or band

of a matrix A is, by definition, the sequence (A(ii+r)) . As in (1], we call a matrix

A u-bended if all nonzero entries of A can be found in at most m+1 consecutive bands.

Explicitly, the matrix A is m-banded if

for some £ , A(i+£,j) 0 0 implies i 4 j 4 i+m

Unless otherwise indicated (e.g., by context), we will always assume that R = 0 ° For a

biinfinite matrix A , this is merely a normalization achieved by considering E A in-

stead of A , with E the shift,

(Ef)(i) :- f(i+l) , all i , all f e RZ

ar invertible operator which preserves more or less all interesting structures in RZ

The m-banded matrix A is called strictly m-banded if

A(i,i)A(i,i+m) i 0 , all i

i.e., the first and last nontrivial band is never zero. In case of a biinfinite matrix A

this nontrivial assumption insures that, for every m-interval I - {i+1,...,i+m} , every

a e RI gives rise to one and only one sequence f with Af - 0 and flI - a . To put it

differently, with

. IL A :-(f e R Af -0)

denoting the kernel or nullepace of A , strict m-bandedness insures that

for every I z- [i+l,i+mJ , the map It- R: f - f I is 1-1 and onto.

We now prove this statement to be true for every m-set I in case A is also tp. We

begin with the following

1a 2.1 . If A is strictly m-banded and tp, and iI < ... < i p, J1 < ... < Jp

then

A( P) > 0 iff i 4 jr r i +m , all r
Jl. r r r -

Proof. Proof of the 'if' part is by induction on p , it being true for p - 0 with

the customary convention that A(O) - i • If il J , then, A being m-banded, we have

6
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il,''',2 ... 12 ' ip )
A( ~ ~ 1'.:p ~ l A(i,*"* I

AJ, ..... i jp - i A~ ) J2 ... Jp

and this is strictly positive, the first factor by the strict m-bandednese of A and the

second by induction. The corresponding argument applies when J, i1+m

Otherwise i1 < J1 < i1 +m . But then, A being m-banded and tp, we have

ji- +,i xxii

0 4 A) x x a axA( il ~Jl .... 1ix X oX oX..
i i :x x xji-: ',....2 ..... :,P

A( A( A%" i) - A(il) A(l A(*xX
I CJ, ..... i p -i Ci C m J2 ... Jp

with the subtrahend strictly positive by the strict m-bandedness of A and the induction

hypothesis, and this implies that the factors of the minuend must be strictly positive,

too.
i,...

As to the 'only if' part, A[ ioOj ]  has zeros in columns (rows) 1, ..., r and

rows (columns) r, ..., p in case ir > Jr (J > Ir+m) , hence Is then singular. 111

Corollary. Lf A is strictly m-banded and tp. and J, K are integer intervals

with K- [JU(J+m) , then XIK i 0 and (Ax)ij- 0 i S-(xlK) ) ji

Proof. (An adaptation of the argument for Theorem 5.1.2 in [6;p.219f]). The assump-

tion that p t- S-(xK) < IJ leads to a contradiction as follows.

Let X, ... , K be a corresponding partition of K , i.e., (without loss of general-

ity)

(2) 0 (-)Ix ,

Then g

p
0 - E -) v i

i-O
with

(3 ) v I  : - Z jx M ) A (- ,k ) i I i -'o ... .p ,

ii
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showing that (vi)p  is linearly dependent. This implies, with V :- (v 0 , ... IVp] * that,

for any io < ... < ip in J 'I

0 - V( 0
0 . , pp) 1k ... ) Ixo 0 ... jx(k )I A(ko, ,,k)

and all summands on the right are nonnegative by the tp of A . On the other hand, we can,

by (2), choose ki e Ki , all i, so that jx(k 0 )I... (x(kp )j 0 and will therefore have

reached a contradiction as soon as we exhibit a corresponding choice for i0 < ... < I P

in J for which i 0 ,.. ., i

(4) A( 0  p) > 0
(k0 . .. k

This we can do as follows. Define (ir)I~l by

Ei_ 1,ip+ 1 ] := J , ir "- max{ i_1 +r , kr-m } , r-0,... o

Then i0 < ... < ip since both sequences (i.1+r)r and (kr-m)r are strictly increasing.

Also, i0 , ... , ip e J since trivially i_, ( ir , while

i r - max{ i l+r , kr- ( ip+ 1
i (i 1l-ip+1+i ( k , sinceI k

since r < p < IJI and kr e K - °i,+M] Finally, kr-m r r e

< kr  implies that i_1 +r 4 kr , hence

kr-m 4maxti 1 +r,k r-m} 4 kr

The lemmia now gives (4) and thezaby the desired contradiction. (J

Rark. We have proved here a particular instance of the statement: " If B is tp

and of full rank, then S-(x) S+ (Bx) " , provided we define S (0) :- length of 0 , as

we did earlier.

We conclude that if y et and yK 0 , then

s+(y(K) IKl-1 - s-(ylK) 4 IKI-1 - i31- rn-I

hence

Proposition 2.5 I If A is strictly m-banded and tp, then y e'tt\0 implies

S +(y ) ( M-1

8



Since S+() ) { i f(i) -0 }I this shows that 'IL is then a Haar space, i.e.,

R y : yI Y is 1-1 and onto whenever III = m . Further, this shows that any

nontrivial y' e v2 with m-1 zeros changes sign across each of these zeros and nowhere

else, i.e.,

Corollary. If A is strictly m-banded and tp, and y 6A\0 vanishes at i1 < ... <

im. , then (with i0 - , : ).L

(6) y'(i1-1)(-)ry,(i) > 0 for ir < i r+i

We make use below of the two subspaces I+ and W of ' . These are defined by

V = {f e I im If(i)I < , * =

Their intersection consists of all bounded solutions to the homogeneous problem Ay = 0

The intersection is therefore trivial iff (0.1) has at most one bounded solution. See [2]

for conditions on A equivalent to having Yt = 0 1 -o.

9
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3. The algorithms L and R . Let x be a bounded sequence satisfying Ax - 1' * In

this section, we investigate y, * the sequence in - =UA which matches x at the

M-set I - {i1 1 .. ,im) with iI < ... < * • For k - 0,...,m, the interval k of such an

m-set is, by definition, the integer interval

i(k )  : _ ]i k .k+1 [

with i0 := -: a .

Our ultimate goal is to show that, for k = m+ := dim +t , Y,' on I(k) lies be_

tween x' and 0 . The proof of this fact involves certain manipulations which are conven-

iently described in terms of two algorithms, given below. For their analysis, the following

fact is useful.

Proposition 3.1 o Let A be strictly m-banded and tp, and let z - x - y, for some

m-set I . Then

(2 zi) o0 for all 1 l 0 1

More precisely,

(3) (-)kzI(i) > 0 for i e I(k) , k-0,...,m

Proof. Let J be an integer interval containing I in its 'interior'. Since A is

m-banded, we have

1,1j - (Az)Ij - AJ,L(ZjL) , with L :- [JU(J+m ),I

and, since A is strictly banded, AJ,L is invertible, by Lemma 2.1. Thus (AJL)-I is

checkerboard, and

zIL " (AJ,L)-1 (1'I j)

It follows that ZIL changes sign strongly at every slot, with z(j)(-) J > 0 for all

j e J and to the left of I . Since J is essentially arbitrary, we conclude that

z' > 0 near - and that z I.I strongly changes sign at every slot. II

to

----------------....- *



Corollary. If the m-set J - mj1 ,...,j3 } is obtained from the m-set

I (i1#...iv by moving the leftmost k v".nts to the left, i.e., ir 4 ir ir ,...,k,

while j r - ir * r-k+1,...,m , then, on Cikl-[ I YI' lies between x' and y,' , with

equality only at the Points k+1 .... in (unless J - I 1.

Proof. The assertion follows by repeated application of the special case

Jr ir for r V k ,i)k-1 < 'k< ik

Iyj J y

The proof for this special case goes as follows. By (3).

( )(y '  - yI')(Jk) - ( -)k(x , - yl )(Jk) < 0

On the other hand, yj and yI agree at the m-1 points of '%ik hence their differ-

ence changes sign strongly across each point of I ik and nowhere else, by the corollary

to Proposition 2.1. Consequently,

(4a) ()r(y. - y 3
1)(i) > 0 for ir < i < ir+I r-k,..,m,

while, again by (3),

(4b) [-)r(x- yj ')(i) > 0 for ir < i < ir+I r, k'...,=

III

What is to follow is based on the proposition and its corollary and the follovtng

attempt at constructing a nontrivial element of L- I

By the proposition, S+(x) 4 m , hence x' has constant sign near - . Let

(5) e :- sign x'(i) for i near -

and let k e 11,m) be even or odd depending on whether C is 1 or -1 * Choose an

m-set I so that ik+i lies to the left of all sign changes of x' (if any) . Then, on

11



I

I(k) , CyJ1' lies below ex' , by (3) . We then consider what happens to y, on 1(k)

as we move i1 , ... , i k  to the left. By the corollary, cy 1 ' must then decrease. There

are two possibilities:

Mi) No matter how far we move i, ... ' i k  to the left, £y1 ' remains positive on

IM . Then we obtain as a limit point some y e TL which agrees with x at ik+1, .0o,

im , hence is not just 0 , and for which Cy' lies between cx' and 0 on ]--,'k+1

But this implies that y e L\0 since x is bounded by assumption. A refinement of the

limit process actually gives

dim V- ; m-k

(ii) Eventually, cyl' becomes nonpositive somewhere in 1
(k) , hence has (at least)

two sign changes there. We would then decrease k by 2 and try again. By the corollary,

the two sign changes of yI' just acquired would not be affected by subsequent moves.

In this way, we either obtain some nontrivial element of V- or else find ourselves

once again at (ii) but with k - I or 2 , making further decreases in k impossible. The

current Y,' must then have two sign changes for every time we passed through (ii).

Since S +(yl) < m , this limits the number of times we can pass through (ii). In particul-

ar, if we start with k - m or m-1 , we must eventually reach Wi).

This allows us to talk about the smallest k we manage to arrive with at (i) as we

vary the initial k and I in the above procedure I call it k. . Analogously, we

define kR as the largest k we manage to arrive with at i) as we play the game to the

right rather than the left. The extremality of kL and kR and the fact that then

dimr > m - kL , dim R+ > kR

lead to the desired conclusion in ways to be made precise below.

We now give a formal description of the game just played.

Algorithm L . Input: the integer kin e 10,m] and the m-set Iin -{ii,... =m)

with i1 < .o. < im . Also, recall c : sign x'(i) for i near -

St 0. k kin, I : in.

12



stop 1. If ()k < 0 , or if x' changes sign to the left of 1(k) , then MIT1

Step 2. Let Ir :- (i -r, ..., ik-r, i k+1"..,i m) , r-0,1,2,...

Step 3. If, for all r , cyire > 0 on I.W , then IT2.

Stee 4. Pick an r for which eyi' 4 0 somewhere in Ir(k) and replace I by Ir

Step S. If k < 2 , then CXIT3 .

Step 6. Decrease k by 2 and return to Step 2

We now analyse the output from this algorithm.

EXITI is a failure exit which allows us to be less careful about the input than we

might otherwise have to be. In the applications of the algorithm, it will be obvious that

we do not exit via EXITI

EXIT2 is the moat interesting of the three, because of the following

Lausa L * If k is as on exit from Algorithm L via EXIT2, then

dim 17 > a -k.

Pioof. For k - m , there is nothing to prove, so assume k < m * Then we have in

hand a sequence t - (y, ) in I for which
(yr) r

0 < £yr+l'(i) < Cyr'(i) < cx'(i) for all i e lik-r, ik+l[

Now let I :- Ir and , for r > 0 > k , consider

Ir, j  z- {i -r ... I k-r, i k ..... i I ,  J+ I . m

Let Yr,j Yir,J be the corresponding interpolants to x from Y ; see Figure.

Yr,j+l' Yr+I,jrYrj

L/  1" x

i1-r' k-r ik iJ1 i im

13



Then, by the corollary to the proposition,

0 < Cyr oi) < Cy '(i) ... < Cy 'Ci) < ex'(i) for ik-r < i < ikyr,k ()< r,k+1 ( i  < Yr,mkk

while Yrj(i) - x(i) for i - ij+1, ... , im , and Yr,j(ij) moves away from x(ij) as

r increases. Since IL is finite dimensional and independent over any m-set (by Proposit-

ion 2.1), it now follows that (Yr,j)r has limit points in I and any such limit point

yj satisfies

0 4 ey.' < ex' on ] -,ik[ , and yj(i) - x(i) , i-ij1,**.,im

Since x is bounded, this implies that zs :1 ys - ys- 1 is in '- , vanishes at is+,

• .. iy , but does not vanish at is ,i.e., the matrix (zs(i)) M is triangulars, t-k+1

with nonzero diagonal, hence invertible. This shows (Z) m to be independent , hencek+1 ob needn ec

dimV- m-k . ill

Finally, if I is obtained via EXIT3 , then we are now certain that y, has a weak

sign change in each of the intervals 0 , 2, ... , kin of I in case E - I , or in each

of the intervals 1, 3, ..., kin in case C - -1 . This is so because once a sign change is

obtained, in Step 4 , in the current interval k , this sign change persists, by the corol-

lary to the proposition. Further, since Cx' N 0 on that interval (we would have exited

via EXITI otherwise), it follows that yI' has two sign changes in each of the intervals

kin - 2J with kin - 2j > 0 , and one in interval 0 if kin is even, for a total of

kin+l sign changes. Since a nontrivial y ell can have at most m-1 sign changes, a.n

input of kin = m or i-1 (depending on the sign of c ) together with an ! in which

lies to the left of all sign changes of x' (to avoid EXITI) is guaranteed to bring us to

EXIT2 . In particular, it makes sense to define

kL raim { k : k obtained as output via EXIT2 from Algorithm L }

and then

(6) diml m- kL

follows.

Algorithm R is constructed just as Algorithm L , except that all moves are made toward

14



the right rather than the left. For completeness, we give the full description.

Algorithm R . Input: the integer kin e [0,m] and the rn-met 'in - ii1 if ....

with i1 < ... < im -Also, set c : sign WMCi for i near

Step 0. k x- kin II I- lin

Stop 1. if (-) ke < 0 , or if x' changes sign to the right of 1(k) , then UIII .

Stop 2. Let 1r :- (ill ....ik i 4r,...,i +r) , r-0,1,2,.
kfk+i Is

Steg 3. If, for all r , £y, 'l > 0 on I (k) then UIY2

Stop 4. Pick an r for which cy 1 -C 0 somewhere in I r (k) and replace I by Ir

Step S. If k > m-2 , then mXT3.

Step 6. Increase k by 2 and return to Step 2.

A discussion very close to that following Algorithm L would establish the following

facts.

Iama R *If k is as on exit from Algorithm R via EXIT2, then dimU k *Fur-

ther, the number

k R :_ max{ k :k obtained as output Via EXIT2 from Algorithm R

is well defined, and

(7) diml k kR

follows.

we are now ready to prove the main result of this section.

Theoris 3.8 . If x is the unique bounded solution to the linear system Ax V

with A a strictly rn-banded biinfinite tp matrix, then, for k -r
4

0dim'L+ and for any

rn-set 1-I Is.. ) with i( ... <M Ilies between 0 and x' on the in-

terval I() Jik* ik+1 In particular. then

(9) Ix -yll 4 lxi on 1 (k)
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Proof Let

J0 < ... < :s+ ,W

be points on which x' alternates in sign, with x(J0 ) 0 • Let I be any m-set with

ikL+ r - 0,1,..,s, and

s :- min(S+(x' ), m-kL)

If k. > I , then, because of the minimality of kL , an application of Algorithm L to the

input kL-2 , I is bound to end via EXIT3, hence yi' (with a possibly changed I) has two

sign changes in each of the intervals kL- 2 , kL-4 , ..., and one sign change in the inter-

val 0 in case kL  is even, for a total of kL-1 sign changes. In addition, y,' alter-

nates in sign on the points ikL , ..., ikL+s since it agrees there with x' and x'

does, giving an additional s sign changes. We conclude that

(10) YT' has at least kL-1 + s sign changes to the left of ik+s

and this conclusion holds trivially in case kL 4 1 •
'4

We now prove that

s S+(x')

Suppose that a < S+(x ' ) Then s - m-kL , and we now know that yl' has m-1 sign

changes on I-, ikL+s[ hence does not change sign on [ik,+s , '[ , yet matches x' at

the points ik+s , ..., ik+S+(x.) on which x' alternates in sign, a contradiction.

We conclude that x has no sign changes to the right of ikL+S , hence an applicat-

ion of Algorithm R to the input kL+s , I is bound to terminate via EXIT2 (because of

(10)) with some k -: k. which is at least as big as kL+s , yet no bigger than kR by

the maximality of kR . In symbols,

(11) kL+s ( kI ( kR

and therefore, with (6) and (7),

(12) dim V + dimn + I (m-kL) + kR  m r + s a dimI.+ S+(x)

This proves that

dim X s (x, )

16
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Thus, if now x is the only bounded Solution of Ax V then l~~V~=(0} hence

then s S+ W
4
x ) -0 , and d mI - d mY i I

This shows that there must be equality throughout (12). This implie, equality in (7), i.e.,

m+ kR

and equality in (11) (with s 0). i.e.,

kL - ki kR

and thus shows (9) to hold for the original I *But now, since S+ Wx) -0 ,this could

have been any i-set I .II

Corollary 1. If A is strictly i-banded and tp, and x is a bounded sequence satis-

fying Ax - 11 , then S Wx) < dim 17A~

corollary 2. The conclusions of Theorem 3.8 and Corollary 1 remain valid if, in the

hypotheses, 1' is replaced by any strictly alternating sequence u

Here, we call u strictly alternating if u(i)u(i+1) < 0 for all i

17
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4. The main remlt.

Theorem 4.1 . If A is a bounded strictl r-banded biinfinite tp matrix, and x

is the unique bounded sequence mapped by A to ' , then A is boundedly invertible on

1. and IA-I -1 Ix[

Proof. For any integer interval J , let I :- [J (J+m)] (J+k) • Then I is an

M-set, I - (i 1 ,o.o 1 with iI < ... < im , say. Let zJ :- x - YI with y, e %L

AL A and x y, on I . Then we conclude from Theorem 3.8 that

(2) Iz3(j)l i Ix(j)l , all j e 3+k

while

I'Ij - (A(x-yfl)Ij - AJ(zJ3 j+k)

with

Aj :- Aj,j+k

Since Ai is tp, this implies that Ai is invertible (as a general result, though the

invertibility of Aj could in the present circumstance be derived directly from Lemma

2.1), hence its inverse is checkerboard and so takes on its norm on the vector 1j ,

i.e.,

IAJI . IAJ I'J)I - IzJIJ+kl

Combine this with (2) to get

(3) IAjI Ix j+kI 1 Ixi , for all intervals J

Since A is bounded and banded, it carries co :- c0 (Z) : [f e R: lim If(W - 01

to itself, and the bounded invertibility of Alc 0  follows now by a standard argument:

Let Pj be the truncation projector,

(P~fi) :. f(i) , i e J

J1 0 otherwise

Then Pj - I pointwise on co , therefore PJAPJ+k- A pointwise on co  as J -- Z

Now Ai - AJ,J+k represents the interesting part of PJAPJ+k I i.e., the map PAlranPJ+k.

Therefore, for u e co  and ui z- Aj3 IpjAu e ran PJ+k , we have

18



luj - UK - AJ-I (PJAu - PJ+ku,

C lxl IAI lu-P +kUl -- 0

J+k

since IAJ 1I 1 < xi and IPJAI < IAI . Thus Aj-Ipj converges pointwise on

ran Aic, to a left inverse of Aico . Further,
--c|A -c0

Kul I lir IujI limr IA IAul f lxi IAulJ J

i.e., AIc is bounded below, hence ran Alc 0  is closed. The same argument shows that

also (AIC0 )* - ATI is bounded below, hence ran AIc0  is also dense. We conclude

that Alc 0  is 1-1 and onto cO , hence boundedly invertible. Its inverse is therefore

again (representable as) a matrix , i.e., (Aico)- 1 . A-Ic for se matrix A I whose

rows are uniformly in , and tAlc0 ) - i - limJ3 z(APJ.k)- PJ  pointwise on co , hence

(4) A-  lin A entrywise.s iJ~z 3

But then A provides the inverse of A on . (co ) , and IA I - lxl since

IA-1I ( lxl from (3) and (4), while A-1 (1') - x . II

The assumptions of Theorem 4.1 can be weakened in two ways.

As already pointed out earlier, the results of Section 3 do not depend on having a

bounded sequence x satisfying Ax -' It is sufficient to consider bounded sequences

for which u :- Ax is strictly alternating, i.e., u(i)u(i+1) < 0 , all i. For the results

of Theorem 4.1, we need, more strongly, that u is uniformly alternating, i.e., strictly

alternating and with inf Iu()I > 0 . In that case, the diagonal matrix

D s- I--.. • iu(i) , ... _I

is bounded (since u - Ax is) and boundedly invertible, while D-1 A is still strictly

m-banded and tp and carries the bounded sequence x to D-lu - 1° , hence D-IA is in-

vertible on . and I(D'IAW'1 - lxi * Therefore A - D(D- A) is invertible and

IA 
1
l 1 I(D- 

1
A)- I 11D-

1
1 . Sup,} Ix()/u(,)I •

Secondly, the assumption of strict m-bandedness, though essential for part of the ar-

gument, is not essential for the conclusion. For, according to (4], a bounded m-banded tp

matrix A , whose rows and columns are linearly independent, is the uniform limit of

19



strictly m-banded tp matrices AL (as e - 0 , say). In our case, the linear

independence of the columns follows from the assumed uniqueness of the bounded solution

to Ax - u , while the linear independence of the rows follows from the assumed total

positivity of A and the assumed existence of x with Ax strictly alternating.

Existence and uniqueness of a bounded solution to the equation Ax = u (with a uniformly

alternating u ) therefore implies existence and uniqueness of a bounded solution x to

the equation A x - u , with u :- u - (A - A )x again uniformly alternating for all

sufficiently small £ . Consequently, A is then boundedly invertible on X. and
C

A-1 1 4 upI i)/u (J)l - sup Ix(i)/u(j)
I u .Ix(iu 5-0 i,]

Thus A must be bgundedly invertible on I and A-I ( sup i'jx(i)/u(j)l

Corollary . The conclusions of Theorem 4.1 remain true if A is only m-banded and

11 is replaced by a uniformly alternating sequence u

The proof of Theorem 4.1 shows more than just the invertibility of A on L. . It

shows that A has its k-th diagonal as maim diagomal in the sense introduced in 1l]: The

sections Aj = AjJ+k are invertible as J - Z and the corresponding set (Aj- I is

bounded. Hence A-1  is the bounded entrywise limit of these finite matrices AJ - 
. Again,

this conclusion persists if A is only m-banded since it is then the uniform limit of

strictly r-banded tp matrices.

Theorem 4.5 . Let A be an m-banded biinfinite tp matrix which is bounded and bound-

edly invertible. Then A has a main diagonal, i.e., for some k and all intervals J

AJj+k  is invertible and A-1  is the bounded entrywise limit of (AJ,J+K)-

Consequently, with D the diagonal matrix

(-)kD-A-'D is again tP. In particular, A- ' is checkerboard,

i+j+kA-1(i,j) 0 , all i,j

20
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S. Concluding Pemarks. S. Friedland, in reaction to a presentation of these results,

suggested that a tp matrix, whether banded or not, must map Z. onto itself if its range

on 1.contains 11 , since it is then possible to qenerate a pro-image for every u eI

as a limit point of minimal solutions of (PjA)y - Pju , using the checkerboard nature ofF

the inverses of finite sections of A . Further, A. Pinkus showed how to establish the sign

regularity of DA_ D , with A-1 the bounded inverse of a tp matrix A , without assuming

that the inverse is the limit of inverses of finite sections. These matters are made

precise in [3).
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